hucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury.
نویسندگان
چکیده
Exosomes are small biological membrane vesicles secreted by various cells, including mesenchymal stem cells (MSCs). We previously reported that MSC-derived exosomes (MSC-Ex) can elicit hepatoprotective effects against toxicant-induced injury. However, the success of MSC-Ex-based therapy for treatment of liver diseases and the underlying mechanisms have not been well characterized. We used human umbilical cord MSC-derived exosome (hucMSC-Ex) administrated by tail vein or oral gavage at different doses and, in engrafted liver mouse models, noted antioxidant and anti-apoptotic effects and rescue from liver failure. A single systemic administration of hucMSC-Ex (16 mg/kg) effectively rescued the recipient mice from carbon tetrachloride (CCl4)-induced liver failure. Moreover, hucMSC-Ex-derived glutathione peroxidase1 (GPX1), which detoxifies CCl4 and H2O2, reduced oxidative stress and apoptosis. Knockdown of GPX1 in hucMSCs abrogated antioxidant and anti-apoptotic abilities of hucMSC-Ex and diminished the hepatoprotective effects of hucMSC-Ex in vitro and in vivo. Thus, hucMSC-Ex promote the recovery of hepatic oxidant injury through the delivery of GPX1.
منابع مشابه
HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing.
Mesenchymal stem cell-derived exosomes (MSC-Ex) play important roles in tissue injury repair, however, the roles of MSC-Ex in skin damage repair and its mechanisms are largely unknown. Herein, we examined the benefit of human umbilical cord MSC-derived exosome (hucMSC-Ex) in cutaneous wound healing using a rat skin burn model. We found that hucMSC-Ex-treated wounds exhibited significantly accel...
متن کاملExosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation
Mesenchymal stem cell (MSC)-derived exosomes have diverse functions in regulating wound healing and inflammation; however, the molecular mechanism of human umbilical cord MSC (hUCMSC)-derived exosomes in regulating burn-induced inflammation is not well understood. We found that burn injury significantly increased the inflammatory reaction of rats or macrophages exposed to lipopolysaccharide (LP...
متن کاملThe protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملLow levels of glutathione peroxidase 1 activity in selenium-deficient mouse liver affect c-Jun N-terminal kinase activation and p53 phosphorylation on Ser-15 in pro-oxidant-induced aponecrosis.
Low levels of hepatic selenium (Se)-dependent glutathione peroxidase 1 (GPX1) activity have been shown to protect against oxidative liver injury in Se-deficient mice. The objective of the present study was to determine if the GPX1 protection was associated with phosphorylations of c-Jun N-terminal kinase (JNK) and p53 on Ser-15, two key signalling events in oxidative-stress-mediated cell death....
متن کاملبررسی پلی مورفیسم Pro198Leu ژنGPx1 در ناباروری ایدیوپاتیک مردان
Introduction & Objective: Infertility affects 10-15% of couples worldwide, and male factors account for nearly half of all infertility cases. Evidence suggests that genetic variation in anti-oxidant enzymes could influence male infertility. Glutathione peroxidase 1 (GPx1) is an anti-oxidant selenoenzyme that detoxify peroxide radicals. GPx1 Pro198Leu polymorphism causes an aminoacid change from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular therapy : the journal of the American Society of Gene Therapy
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2017